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Abstract—Spatial data balancing distribution can evidently 
improve the performance of parallel spatial database in 
shared nothing parallel architecture. Considering spatial 
locality and unstructured variable length characteristics of 
spatial data, this paper proposes a dynamic spatial data 
balancing distribution method under shared nothing 
parallel database environment. By using Hilbert ordering 
code to keep spatial locality relationship between spatial 
objects, the presented method can fulfill spatial data static 
balancing distribution status, which depends on 
hierarchically decomposing Hilbert space-filling curve code 
to allocate approximately even spatial data volume to 
parallel nodes in distributed network. Then spatial 
proximity index is introduced to resolve spatial data 
unbalancing problem caused by spatial database dynamic 
updating. Through moving spatial data fragments to goal 
node which is the minimum spatial proximity with data 
moving out node, the spatial database redistributing 
strategy can attain dynamic data balance among all network 
parallel nodes. Our experimental results show that the 
proposed method can effectively improve parallel 
performance deterioration resulted from spatial data 
unbalancing and achieve spatial data dynamic balancing 
distribution in parallel spatial database. 
 
Index Terms—Spatial data distribution; data balancing; 
parallel spatial database; dynamic data moving; data skew 
 

I. INTRODUCTION 

Parallel spatial database has been becoming the 
inevitable trend of high performance spatial database 
development. The most research of parallel spatial 
database has focused on shared nothing architecture 
because of its availability, scalability and high cost 
performance ratio. Shared nothing parallel architecture 
means each parallel database node holds exclusive CPU, 
memory and secondary storage, which can provide 
parallel dataflow to exploit the I/O bandwidth of multiple 

disks by reading and writing them in parallel [1]. 
However, spatial data unbalancing distribution can 
severely degrade the performance of parallel spatial 
database in shared noting parallel environment. So the 
research of spatial data balancing distribution method has 
caused more and more interests, it means to allocate 
spatial data to different network nodes uniformly to 
obtain higher speedup performance of parallel spatial 
database. Data balancing distribution is one of the most 
important factors to improve the performance of parallel 
spatial database under shared nothing parallel architecture 
[2]. 

Up to now, a number of data distribution methods have 
been proposed. Reference [3] summarized several typical 
data distribution methods (Grid, CMD and HCAM) and 
discussed how to use them to deal with spatial data 
allocation. Oracle database also provides two spatial data 
distributing strategies: one based on X or Y-coordinates 
value, other based on X and Y-coordinates value [4]. 
Furthermore, reference [5] proposed a spatial data 
distribution method called HCSDP which designed 
specially for spatial data types. All these methods can 
achieve well data balancing distribution through static 
data allocating ways. However, static data balance is easy 
to be broken when facing to dynamic update of spatial 
database. Many studies have already addressed dynamic 
balancing distribution issues of parallel database. 
Reference [6] designed a dynamic bucket spreading 
strategy in super database system.  Reference [7] dealt 
with data unbalancing issue using partition tuning ways. 
Reference [8] considered the causes and characteristics of 
data skew and described a dynamic data balancing 
method in very large shared nothing hypercube database 
systems. Reference [9] researched a full dynamic 
partitioning approach faced to data skew issues that can 
effectively distribute load among processing nodes 
without priori knowledge of data distribution, and [10] 
provided NBRADJUST and REORDER data balancing 
methods. But these data balancing distribution strategies 
almost always are under the assumption of uniform data 
distribution. Unfortunately, spatial data have unstructured 
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variable length and non-uniform distribution 
characteristics. This means existing dynamic data 
balancing methods are hardly to be used for resolving 
spatial data balancing distribution issues. These motivate 
our research into a proper spatial data dynamic balancing 
distribution method for shared nothing parallel spatial 
database. 

Our research based on shared nothing parallel database 
to propose a dynamic spatial data balancing distribution 
method which includes two main strategies: static data 
partitioning strategy and dynamic data moving strategy. 
Section II introduces the static data partitioning strategy. 
Static data partitioning is aim to achieve initial static data 
balancing distribution among parallel nodes. Section III 
presents dynamic data moving strategy. Dynamic data 
moving strategy is responsible for rebalancing data 
distribution when spatial database dynamically updating. 
Section IV gives the experiments and discusses the 
results. Section V is the conclusion. 

II.  STATIC DATA PARTITIONING STRATEGY 

Spatial data is unstructured variable length data, and 
has non-uniform distribution and spatial locality 
relationship characteristics, so spatial data balancing is 
more difficult than general data balancing, which need 
not only satisfy data volume balancing distribution on 
each parallel node, but also keep spatial locality of spatial 
objects after data distributing.  

 

A. Basic idea of static data partitioning strategy 
Our static data partitioning strategy is to use initial 

order Hilbert space-filling curve to impose a linear 
ordering on multidimensional spatial objects, and then 
partition spatial objects according to this ordering to 
preserve spatial locality of spatial objects. To partition 
whole space into coarse grid cells, and take the Hilbert 
code as spatial object code when the center point of 
spatial object find in the interior of corresponding grid 
cell. Many spatial objects could share the same code. To 
sum up data volume of spatial objects in each grid cell 
according to the order of Hilbert code until the 
cumulative data volume is more than average data 
volume aveV , obviously, it satisfies (1).  

 /ave totalV V P=    (1) 

Here, totalV  denotes the total data volume of spatial 

objects. P denotes the number of parallel database nodes. 
Subsequently, to decompose the last cumulative grid 

cell into four sub-grid cell and recalculate the Hilbert 
code of sub-grid. To add spatial object data volume of 
sub-grids to the cumulative data volume orderly, if need, 
hierarchical decomposition process of grid cell should be 
carried out until the cumulative data volume 
approximately equal to aveV . Due to the cumulative data 

volume could infinitely closed to the average data volume 
by the hierarchical decomposition of grid cell, there is 
need to set a final order of Hilbert curve to end the course 
of hierarchical decomposition of grid cells when the 

current order of Hilbert curve equal to or more than the 
given finial order. Setting final order of hierarchical 
decomposition could avoid excessively intensive space 
partitioning and improve spatial data partitioning 
performance.  

B. Two key problems  
According to the basic idea mentioned above, static 

data partition strategy need resolve two key problems: 
one is how to estimate the initial and final order of 
Hilbert curve; other is how to encode the decomposed 
grid cells according to structure features of Hilbert curve. 

(1) Hilbert initial and final partitioning order number  

Let n denotes the total number of spatial objects. It’s 
easy to understand the course of Hilbert curve 
hierarchical decomposition should be terminated when 
each Hilbert grid cell includes only one spatial object at 
most. That is to say, the number of grid cells should be 
more than the number of spatial objects. According to the 
structure of Hilbert curve, M  order Hilbert curve has 

2 2M M×  grid cells. M and n should accord with the 

condition 22 Mn < , i.e., 2

1
log

2
M n> . So here, the finial 

order number of Hilbert curve partitioning is set as (2). 

 2

1
log 1

2
M n⎡ ⎤= +⎢ ⎥⎣ ⎦

 (2) 

Theoretically speaking, the initial order number 

0m could be arbitrary positive integer which just need the 

condition 0m M< , however, if 0m is too small, it will 

result in overfull hierarchical decomposition, whereas, if 

0m is too large, it could be unnecessary. So according to 

our practical experience, the value of initial order is 
suggested as (3). 

 0 / 2m M= ⎡ ⎤⎢ ⎥   (3)  

(2) Hilbert hierarchical decomposition coding 

Because of the fractal feature of Hilbert curve, the kth  
order Hilbert curve always could be generated through 
finite time’s decomposition of the ( )k i th− order Hilbert 

curve. There have been many coding methods of Hilbert 
curve to be achieved [11-15]. Reference [16] proposed a 
classical Hilbert coding algorithm which could calculate 
Hilbert code according to the row and column code of 
grid cell.  

Our hierarchical decomposition method of Hilbert 
curve is to divide current grid cell into four equal-sized 
sub-squares cells, which means to halve the row and 
column of grid cell by horizontal and vertical two 
directions. If we represent the row and column of grid 
cell to be I and J , then after once hierarchical 
decomposition, the new row number should be 2I and 
2 1I + from the left to right, and the new column number 
should be 2J and 2 1J +  from the bottom to top. At the 
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same time, the current order of Hilbert curve changes 
into 1m m= + . Then based on the classical Hilbert coding 
algorithm, it’s easy to encode the decomposed Hilbert 
grid cells. Fig.1 illustrates the implementation of 
hierarchical decomposition from one order Hilbert curve 
into two order Hilbert curve about spatial object A.  

 

Figure 1.  Hilbert hierarchical decomposition coding  

C. Static data partitioning algrithom  

TABLE I.  SYMBOL DEFINITIONS    

Symbol Definition 

P Number of parallel nodes. 

n Number of spatial objects 

0m  Initial partitioning order number 

m  Current order number of Hilbert curve 

k  Code of m order Hilbert curve, 
2[0,..., 2 1]mk ∈ −  

M  Final partitioning order number 

ku  Number of spatial objects in the k-th Hilbert code grid. 

iv  Size of the i-th spatial object, [0,..., ]i n∈  

av  Size of non-spatial attributes of spatial object 

jB  
Size of spatial objects in the j-th partitions, 

[1,..., ]j N∈
.  

kV  Size of spatial objects in the k-th Hilbert code grid 

aveV  Average data volume of  each partition 

 
To define some symbols used in Table I. Detailed 

static data partitioning algorithm is described as follow. 
• Construct initial Hilbert curve to partition the 

whole space into grid cells: Initialize 0m  and M , 
and divide the whole space range into I I× sub-

grid cells ( 02mI = ). 

• Code and sort each spatial object according to the 
Hilbert code of the center point of spatial object. 

• Calculate the kV  size of each sub-grid and aveV  
by (4) and (5). 

 
1

ku

k k a i
i

V u v v
=

= × +∑   (4) 

 

22 1

0

/ /
m

ave total k
i

V V P V P
−

=

= = ∑   (5) 

• Sum up data volume of each grid cell according 
to the order of Hilbert code until the cumulative 
data volume is more than aveV : 

Setting 0jB = , 0m m= , from the beginning 

of 0k = , 1j = : 

      If ( )j kB V V+ < ,  

then j j kB B V= + , 1k k= + ; 

      Else if ( )j kB V V+ = , 

 then j j kB B V= + , 1j j= + , 1k k= + ; 

Else if ( )j kB V V+ >  and m M< , 

then 1m m= + , and to decompose the 
current sub-grid into the m th−  order grid and 

calculate the corresponding kV  value of each 

decomposed grid cell, and then recursively carry 
out this step until m M= , set 

j j kB B V= + , 1j j= + , 1k k= + ; when j N> ,  

to stop the  course. 

• Map partitions jB  to the j-th physical storage 

node.  

 

0m

kV

kV

kV

aveV

aveV

aveV

 
Figure 2.  Static data partitioning algorithm.  

JOURNAL OF SOFTWARE, VOL. 6, NO. 7, JULY 2011 1339

© 2011 ACADEMY PUBLISHER



Thus, spatial objects of cumulative grid cells form the 
first spatial partition. The rest of partitions could be 
partitioned by the same iterative processes. By far, spatial 
data static balance is achieved through hierarchal 
decomposition of lower order Hilbert grid cell. Fig.2 
shows the flowchart of static data partitioning algorithm. 
The more detail could find in the author’s related research 
paper [17]. 

III. DYNAMIC DATA MOVING STRATEGY 

A. Basic idea of dynamic data moving strategy 
Static data balance is easy to be broken by inserting or 

deleting of spatial objects in spatial database. So a 
dynamic data moving strategy is proposed in here to 
rebalance spatial data distribution when database 
updating. In order to avoid damage of spatial locality 
relationship, our dynamic data moving strategy is to 
transfer spatial objects based on proximity of spatial 
datasets in parallel nodes. Proximity is an index 
measuring spatial locality of spatial objects. Different 
proximity measure is suitable to different application. 
Reference [18] defined a measure of similarity of two 
rectangles R  and S  is the proportion of queries that 
retrieve both rectangles as (6). 

 
| |

( , )
| |

qproximity R S
Q

=  (6) 

The concrete computation of equation could see 
corresponding reference. Here, | |q is the number of 

queries retrieving both R  and S ; | |Q is total number of 

queries. Considering spatial range query is the most 
common application in spatial database, if using the 
minimum boundary rectangular of spatial dataset to 
denote spatial dataset self, then the proximity of two 
spatial datasets become easy to measure.  

Let Pi denotes the i-th parallel node with k number 

spatial data subsets { }1, 2, ..., kR R R R= , R0 denotes a 

moving subset, the proximity of R0 and node Pi could be 
defined as (7). 

 0 0( , ) max ( , )
i

i iR R
proximity R P proximity R R

∈
=  (7) 

In order to keep the parallel performance of parallel 
system, the similarity of two spatial datasets should be as 
low as possible. That is to say, the spatial dataset should 
move to the candidate node that has the minimum spatial 
proximity with the current spatial dataset. According to 
the minimum proximity principle, if select a subset Rk 

from candidate dataset { }1, 2, ..., mR R R R=  to move to the 

appointed node P0, then Rk should satisfy condition (8). 

 0 0( , ) min ( , )
i

k iR R
proximity R P proximity R P

∈
=   (8) 

Because data moving between parallel nodes could 
consume large bandwidth, so generally strategy is to set 
an experiential threshold value to control the happen 

frequency of data moving process. The threshold value 
could be designated according to user requirements and 
working practices. 

B. Dynamic data moving algorithm  

TABLE II.  SYMBOL DEFINITIONS    

Symbol Definition 

Pi The i-th node. 

Pskewi Data skew of node Pi.  

Skew Data skew of the whole system. 

λ Threshold 

Vi Data volume of node Pi. (unit: Byte) 

aveV  Average data volume of partitions. (unit: Byte) 

'
iV The adjustable data volume of node Pi. (unit: Byte) 

Ri The i-th subset waiting to handling. 

 
To define some symbols used in Table II. Here, the 

means of aveV  is the same as in (1), and iPskew is defined 

as (9). 

 i ave
i

ave

V V
Pskew

V
−

=   (9) 

For a parallel system which has P nodes ( [1, 2,... ]P N∈ ), 

to define the data skew of whole system as (10). 

 { }1,2,...max | |i P iSkew Pskew==   (10) 

The proposed spatial data dynamic balancing 
distribution algorithm is described as follow. Fig.3 shows 
the flowchart of dynamic data moving algorithm. 

• Compute iPskew  of each nodes and Skew, if 

0iPskew < , the i-th node is Data-In type node, if 

0iPskew > , the i-th node is Data-Out type node. 

• When Skew λ≥ , to compute ' | |i i aveV V V= − , and 

Descending iPskew  and subsets of each node to 

find a node kP  which has the maximum data 

skew. 

• If ' 0kV > ( ' | |k k aveV V V= − ), to find Data-In nodes 

( 0iPskew < ), and iteratively search subset 

kR which is nearest to ' 'min( , )k iV V  and less 

than '
kV , and then to put ( , )k iR P into candidate 

data moving subsets. If candidate subsets is null, 
to split the maximum subset maxR of node kP  

using static data partitioning algorithm described 
in section II to form proper size candidate subsets. 

• If  ' 0kV < , to find Data-Out nodes ( 0iPskew > ), 

and iteratively search subset iR  which is nearest 

to '
iV and less than iR , and then to put 

( , )i kR P into candidate data moving subsets. If 
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candidate subsets is null, to split the maximum 
subset maxR of Data-Out nodes using static data 
partitioning algorithm described to form proper 
size candidate subsets. 

• Compute the proximity of each candidate subset 

and node kP , then to find out the best candidate 

subset based on the minimum proximity principle 
shown in equation (8) to move datasets. 

• Do the whole steps until satisfy the given 
threshold condition. 

 

Figure 3.  Dynamic data moving algorithm. 

IV. EXPERIMENTS AND RESULTS 

Our experiment builds a shared-nothing parallel 
network environment with 6 general computers, one of 
these simulates client computer, and the rest simulate 
parallelism handling nodes. Each computer has the same 
hardware: CPU 1.8GHz, memory 256M, and connect 
with 100Mbps Ethernet. The size of experimental dataset 
is 25,490,352 bytes, include 82,026 spatial objects. The 
initial distribution of experimental dataset is shown as 
Table III. Obviously, spatial objects of experimental 
database are uneven distribution between 5 parallel nodes.  

 

TABLE III.  EXPERIMENTAL DATABASET INITIAL DISTRIBUTION 
(SKEW=0.48330) 

Node No. Data Volume Distribution （Byte） 

P1 3 581 640 

P2 3 184 512 

P3 4 377 528 

P4 6 784 704  

P5 7 561 968 

 
According to the above mentioned definition of data 

skew, it’s not difficulty to get Skew is equal to 0.48330 
before data balancing distribution. When setting threshold 
is equal to 0.1, the processes of data movement and 
results of dynamic data distributing using the proposed 
method is shown in Table III. From Table IV, it’s easy to 
see which nodes happened data move in or move out, 
even the size of data movement when dynamic data 
moving strategy is executed in every time.  

TABLE IV.  DYNAMIC DATA MOVING PROCESSES  ( λ =0.1) 

Executed 
Times 

Data 
Out 

Data In 
Data 

Movement 
（Byte） 

Skew 

1 P5 P1 398 280 0.40518 

2 P5 P3 398 256 0.37535 

3 P4 P2 416 640 0.32706 

4 P5 P1 398 256 0.29362 

5 P4 P2 398 280 0.24894 

6 P5 P1 398 256 0.21550 

7 P4 P2 398 232 0.17082 

8 P5 P2 398 232 0.09287 

 

 
Figure 4.  Spatial datasets moving out from Note P4 ( λ =0.1). 

Fig.4 and Fig.5 illustrate the processes of data dynamic 
moving algorithm, taking node P2 and P4 for example to 
show the data dynamic moving in and moving out. Black 
color denotes spatial datasets stored in local node, green 
color means datasets moved into current node from other 
nodes, and red color shows datasets moved out from 
current node. Obviously, when thresholdλ  is 0.1, P2 is a 
Data-In node, and P4 is a Data-Out node. Meanwhile, no 
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datasets of any nodes split. If setting threshold λ  is 0.05, 
there are two datasets on node P5 to split into two sub-
datasets respectively, as shown in Fig.6, orange color 
denotes the sub-datasets moved out from current node P5 
after splitting, and blue color is the sub-datasets which 
still stored in local node P5 after splitting.  

 

 
Figure 5.  Spatial datasets moving into Note P2 ( λ =0.1). 

 

Figure 6.  Spatial datasets split into sub-datasets in Note P5 ( λ =0.05). 

Table V is the results of spatial data redistribution in 
each node when less than thresholds 0.1, that show each 
node get more balance distribution. When threshold is 0.1, 
Skew attained 0.09287 after 8 times’ dynamic data 
moving processing, which is less than threshold 0.1. 
Meanwhile, the distribution of spatial data on parallel 
nodes from P1 to P5 becomes more even than before. The 
improvement of data skew before and after using 
dynamic data moving strategy is shown in Table V.  

TABLE V.  SPATIAL DATA DYNAMIC BALANCING RESULTS 

(λ =0.1) 

Node No. 
Data Volume Distribution （Byte） 

Before (Skew=0.48330) After (Skew=0.09287) 

P1 3 581 640 4 776 432 

P2 3 184 512 4 795 896 

P3 4 377 528 4 775 784 

P4 6 784 704 5 571 552 

P5 7 561 968 5 570 688 

To find out the relationship between the size of data 
movement and threshold setting, experiments vary in 
value of threshold from 0.4 to 0.01 to test the effect of 
dynamic balancing distribution method, the results of 
Table VI show that the lower threshold is, the more size 
of data movement is.  

TABLE VI.  THE RELATIONSHIP OF DATA MOVEMENT AND 
THRESHOLD 

Skew 
Threshold 

Executed 
Times 

Data Movement 
（Byte） 

Skew 

0.4 2 796 536 0.37535 

0.3 4 1 611 432 0.29362 

0.2 7 2 806 200 0.17082 

0.1 8 3 204 423 0.09287 

0.05 12 4 063 455 0.02725 

0.02 14 4 167 519 0.01476 

0.01 16 4 242 687 0.00683 

 
In order to prove the improvement of parallel operation 

performance after spatial data dynamic balancing 
distribution, we test the operation performance of spatial 
range query before and after data skew handling vary in 
Skew (0.48330 and 0.95516). Without loss of generality, 
the whole index region is normalized unit square. The 
query rectangles are squares with size Q, the normalized 
query range Q is change from 0.2~0.6. Their centers are 
uniformly distributed in the unit square. For every time 
experiment, 100 randomly generated queries were asked 
and the results were averaged as response time of the 
spatial query. The results of Table VII show that the 
response time of spatial query when Skew is 0.48330 is 
always better than those of Skew 0.95516, which proves 
the larger data skew is, the lower performance of parallel 
spatial database is, and vice versa. So, spatial data 
dynamic balancing distribution method would help to 
improve spatial query performance of parallel spatial 
database. 

TABLE VII.  EFFECT OF DATA SKEW FOR SPATIAL QUERY 

PERFORMANCE ( λ =0.1) 

Query 
Range 

Response Time of Spatial Query (Unit : ms) 

Skew=0.48330 Skew=0.95516 

Before After Before After 

0.2 25 24 27 25 

0.3 50 47 55 49 

0.4 85 83 94 84 

0.5 133 130 145 131 

0.6 190 183 198 188 

 
From the results of Table IV to Table VII, all these 

experiments prove that the proposed spatial data dynamic 
balancing distribution method could satisfy spatial data 
dynamic balancing distributing requirements effectively, 
and improve spatial query performance obviously. Our 
proposed method is an effective spatial data dynamic 
balancing distribution method. 
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V. CONCLUSION 

Spatial data unbalancing distribution could degrade the 
performance of parallel spatial database under shared 
nothing parallel environment. Considering spatial locality 
and unstructured variable length characteristics of spatial 
data, this paper proposed a dynamic spatial data 
balancing distribution method based on the minimum 
spatial proximity which consists of static data partitioning 
strategy and dynamic data moving strategy. Our 
experimental results show that the proposed method 
could effectively achieve spatial data dynamic balancing 
distribution. 
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